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[ The simulation of large-scale integrated circuits requires a

* considerable amount of computation time using the currently available

circuit simulation programs like SPICE. One of the bottlenecks of

these simulation programs Is in solving these systems of linear equa-

tions using LU factorization. This thesis explores the idea of a

nested clustering algorithm to partition the matrices into bordered

*block diagonal form in order to facilitate parallel processing. In

addition. an architecture combining both the systolic array and the

* wavefront array processors is proposed to perform the LU factoriza-

tion of the partitioned system using highly concurrent parallel pro-

cessor arrays.
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With the advances in VLSI technology, there is tremendous demand

for efficient circuit simulators and other computer-aided design

tools. One of the factors limiting the design time of VLSI circuits

is the slowness of circuit simulation programs. Conventional circuit

simulators , for example. SPICE [181. wore dejsigned initially for the

cost-effective analysis of circuits containing a few hundred transis-

tors or less. Because of the need to verify the performance of

g larger circuits, many users have used programs like SPICE E18] and

have successfully simulated circuits containing thousands of transis-

tors despite the cost. Because these circuit simulation programs are

p slow, designers are forced to use less accurate models and to make

assumptions during the simulations in order to save computation cost.

At the circuit level, the electrical behavior of the design is

modelled in terms of algebraic-differential equations. The use of

implicit integration methods, together with modified Newton iterative

methods for solving the algebraic-differential equations representing

the circuit model, has been found to give reliable numerical solu-

tions. and has thus been implemented in many circuit simulators, such

as SPICE [18].

A number of approaches have been used to improve the performance

of conventional circuit simulators for the analysis of large cir-

cuits. The time required to evaluate complex device model equations
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has been reduced by using table-lookup models [19]. Techniques based

on special purpose microcodes have been investigated for reducing the

time required to solve sparse linear systems arising from the linear-

ization of the circuit equation [20]. Node tearing techniques [5,15]

have also been used to exploit circuit regularity by bypassing the

Ssolution of subcircuits whose state is not changing and to exploit

the vector-processing capabilities of high performance computers such

as the Cray-1 used in the simulation program aC.ASSIE [21]. The

advent of VLSI technology has made the cost-effective design of spe-

cial purpose machines possible. Examples of these machines are the

Yorktown Simulation Engine (YSE) for logic simulation [22], systolic

arrays [4] and the wavefront array processors (2]. Special purpose

machines have also been proposed for the solution of linear systems L%

of equations [2]. Most of these machines limit the size of the

operand matrix except for the one designed by Pottle [7]. Special

matrix structures such as the Bordered Block Diagonal Form (BBDF) are

discussed in Blossom Il].

The procedure involved in a standard circuit simulation is shown

in Fig. 1 (16]. The majority of the time spent to run a circuit

simulation can be lumped into two categories: the time required to

solve the system of sparse linear equations. SQLVE (steps(7) and (8))

and the time required to form the entries of A and b in Ax-b, FORM

(steps(5) and (6)). These two steps are repeated over and over

again. As seen in Fig. 2, for small circuits (N < 20), the majority

of the solution time is spent performing FORK. However, when the

~+ -
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1 Read Circuit Description

and Initialize Data Structures

2Update Values of I ndepenident
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Fig5. 1. Circuit simulator flow diagrm for transient analysis [16].
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size of the circuit grows, an increasing percentage of the time is

spent in the SOLVE phase for all standard circuit simulators running

on conventional computers. This thesis proposes a design of a spe-

cial parallel processor to be used in performing the steps involved

in SOLVE.

There are two methods for solving large systems of linear equa-

tions. One method is to use LU factorization, forward and backward

substitutions on the entire matrix to arrive at the solutions in one

pass. The other method is to use an indirect relaxation method where

certain solutions are guessed at on the first iteration. The new

solutions are then found and the process is repeated until the solu-

tions converge. For most circuits, the fraction of nodes which are

changing their voltage values at a given point in time decreases as

the circuit size increases. For circuits containing over 500 MDS-U
FETS, fewer than 20 percent of the node voltages change significantly

over a simulation time step. Circuit simulators exploit this time

sparsity or latency by using device-level or block-level bypass

schemes. In a device-level bypass scheme, if the terminal voltages

and branch currents of a circuit element do not change significantly

from the previous iteration, its contributions to A and b in Ax-b are

not re-evaluated, and the values computed during the previous itera-

tion are used. In the block-level bypass, both the matrix element

L evaluation and the node solution steps are bypassed for each block of

inactive connected circuit elements.
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The indirect method is suitable for large NDS digital integrated

circuits. However, for nonlinear analog circuits or digital circuits

with floating capacitances, the solutions are not guaranteed to con-

verge, or if they do converge, the convergence rate is slow (16].

Thus, the direct method is more suitable for analyzing these cir-

cuits.

The types of circuits that are analyzed are usually very large,

with thousands of nodes. Although sparse matrix techniques have been -

found to be computationally efficient, partitioning the system matrix

into a bordered-block diagonal form has been suggested as one way

where parallel processing could be used to speed up circuit simula-

tion [5]. Another approach could be the use of systolic and wave-

front array processors [2] after possibly ordering the matrix in

band form. However, the application of systolic arrays and wavefront

array processors to the parallel solution of bordered block diagonal

partitioned matrices has not yet been investigated. The purpose of

this thesis is to propose a systolic wavefront array architecture for

LU factorization of partitioned systems. The architecture is also

compared to other parallel architectures for evaluation purposes.

Using partitioning techniques, the circuit matrices may be ordered

into bordered block diagonal form (BBDF) (5]. Bordered block diago-

nal matrices have the form shown in Fig. 3. The circuit can be

divided into subcircuits which are connected together by a relatively

small number of nodes. Some heuristic tearing schemes [14] on how

the reordering can be done have been published. However, to obtain

-...... "......-".....'.......-..-........, ..-.......'-." ..'.......'- ....-" ......._...,. ..1....... ......,-...........-........-".-.."..""
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maximum concurrenc7, a nested form of the clustering algorithm is

proposed in this thesis to reorder the nodes. In this approach, the

entire circuit is first divided into two subircuits in the BBDF

form. Each of the two suboicuits is further divided into two subeir-

cuits in BBDF in a recursive manner. This procedure continues until

each subcircuit is approximately the minimum size allowed. LU fac-

torization of the different suboircuits can then be carried out in

parallel. However, the synchronization of the solutions at the

interconnection level is a problem that needs careful consideration.

LU factorization involves repetitive computation on a large set

of data. It involves a matrix multiplication-subtract operation

which is a compute-bound problem. For matrices that are full, a

great deal of concurrency can be achieved with cost-effectiveness on

single-instruction-multiple-data (SIXD) machines because of the regu-

lar structure of the operations performed in the algorithm. However,

as the matrix becomes sparse, it is very inefficient to use the same

technique and, in case of parallel processing, the need for unstruc-

tured computations is too complicated for cost effective solutions on

SIND machines. This is because the LU factorization itself involves

a great deal of data dependencies which lead to moderate parallelim.

The alternative architecture is multiple-instruction-multiple-

data stream (MIND). However, the need for synchronization of data,

the mount of overheads allotted for arbitration between processors

and/or memory conflicts usually degrade the performance. Thus, SIND

architecture is chosen for discussion.
,o.
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The performance evaluation between the different types of archi-

tectures for LU factorization is based on the following main issues:

1. concurrency achieved by the machine

2. =mery access and I/O time

3. synchronization of data

4. control complexity

S. hardware vs. software tradeoff of the algorithm

6. performance-cost effectiveness

The thesis is organized as follows. In Chapter 2. the steps

involved in LU factorization are clearly defined and explained, fol-

lowed by a study of general purpose and special purpose architectures

for parallel processing. In Chapter 3, partitioned systems are

solved in an implementation having both the characteristics of the

systolic array and the wavefrout method. Chapter 4 shows how the

.. entire system is configured using the direct method of solving the

matrices, whereas Chapter 5 discusses the configuration using an

indirect Gauss-Seidel method. Chapter 6 is the conclusion of the K

thesis and suggests future direction of research. The block diagram

of a C03S processing element is given in the Appendix. Such a pro-

cessing element can form a cell in a systolic array.

-' ' -, --.- .-.'....I. .... : . : .; . : .. . .... .... ... .. .. ...
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2.1. Definition of LU Factorization

The problem that this paper concentrates on is the LU decomposi-

tion of large matrices which occurs in the solution of linear systems

of equations. To solve the problem Ax - y, the matrix A is first

decomposed into the product of a lower triangular (L) and an upper

triangular (U) matrix, i.e., A - LU. Such an LU decomposition is

unique if and only if A is strongly nonsingular [10]. Then a forward

substitution step is performed where z is determined by solving Lz =

y. The solution, x , can then be obtained by solving Ux - z. This

is referred to as the direct method for solving linear systems of

equa ti ons.

Crout's algorithm is one of the methods used in the decomposi-

tion. It is written in Pascal as follows:

For i:- 1 to SIZE do begin
for j:= i+l to SIZE do

ari,j] := a[i.j] / a[i,i];
for k:- i+1 to SIZE do

for w:- i+l to SIZE do
a[kw] :- a~k,w] - a[k,i] a[iw];

end;

where it is assumed that at every step, s[i,i] is not 0.

The efficiency of evaluating the inner loop in the above algo-

rithm can be achieved through parallel processing of the machine and

.. ...-.... :...........- .........-. ... ..... ..-... .. .....-. ',.-,._-..,..'. -. ,. 'd . . ° ' . ' . . - %
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through the choice of a good algorithm. The multiplication can be

speeded up by special purpose hardware whereas the addition can also

be speeded up by faster memories.

This algorithm can be implemented either in the software of gen-

eral purpose machines or in the hardware of special purpose machines.

The systolic array [4] and the wavefront array [2] processor are two

different hardware implementations of the algorithm. The basic

difference between the two architectures is that systolic arrays use

a synchronous timing scheme whereas the wavefront array processors

use a self-timed handshaking scheme. Their advantages and disadvan-.

tages will be compared in the following sections.

For both partitioned and non-partitioned matrices, there are two

different classes of methods used for solving linear systems of equa-

- tions. One of then is a direct method in which the results are com-

U puted in sequence in one pass through the hardware. The other method

is an indirect method such as a relaxation-based Gauss-Seidel method.

In this method, an initial guess is made for the values of the inter-

connection nodes in the first pass in order to solve for the values

of the subcircuit nodes. The new values of the interconnection nodes
.%-

are then compared with the previous guess. The whole procedure is

repeated until the computed values converge. Latency [5] can be

explored in this method so that only certain subcircuits need be

updated after each iteration. If the solutions of these subcircuits

are not within a specified tolerance, more iterations are needed.

This procedure should reduce the complexity of evaluating partitioned
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systems as will be seen in the next chapters; but is recommended to

be used when the iteration process is expected to converge reasonably

fast.

These two methods are discussed in the following chapters after

a hardware scheme is chosen for the LU factorization array.

2.2. GENERAL PURPOSE vs. SPECIAL PURPOSE ARCHITECTURE

2.,2.1 General Purpose Architecture

The main advantage of, general purpose machines is the flexibil-

ity they offer. Different operations, algorithms, sizes of matrices

and sparsities of matrices can be evaluated by changing the software

program. If a certain algorithm is chosen, the LU factors of dif-

ferent matrices can be computed with only very slight modifications,

e.S., changing certain parmeters or adding several subroutines to

handle sparsity. However, performance is sacrificed for this flexi-

bility. A great deal of buffering, I/O and memory access and execu-

tion overheads result. A more complicated instruction set must be

implemented in general purpose machines for various applications.

Additional time is needed to decode these instructions and extra

hardware and software must be incorporated as well to implement these

instructions. There is also the data-routing problem to get the

sequential data into and out of parallel arrays. This operation

requires complex address calculations which are expensive on general

purpose machines.

-- 5



3 Another disadvantage is that with the fixed word length in the

machine, rounding errors in algebraic processes, if not properly con-

trolled, may lead to unreliable solutions. Special purpose machines

can be designed with very good numerical control for these scientific

computations. This can be achieved with special hardware for pivot-

ing [61 so that the denominators of the divisions daring LU factori-

zation are always the largest numbers along the columns. This is

usually done in the software of general purpose machine and is a

time-consming proce ss.

The fact that fast general purpose machines are complicated to

design and are usually very expensive calls for the design of special

purpose machines that can be connected to an existing and relatively

inexpensive host machine for fast numerical computation.

2.2.2. Svecial Purpose Architecture

The hardware cost and size of both special and general purpose

machines are relatively insignificant compared to the software cost.

However, the design cost of special purpose processors is usually

much less than general purpose processors. A special purpose machine

usually consists of simple processors of the same kind connected by a

network of local and regular interconnects. Extensive concurrency

can be achieved if the algorithm is designed to introduce high

degrees of pipelining and multiprocessing. Data can be routed to the

appropriate processor directly from memory to minimize the memory h

access time, which is the bottleneck of most algorithms. Thus, mul-

tiple computations can be performed per I/0 access.

I."
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The bottleneck of using special purpose mesh connected proces-

sors is the time wasted in interprocessor data movement between the

special purpose processors and the host. However, the computation

can usually be done faster than general purpose machines. Less over-

heads are involved in decoding instructions and buffering because the

architecture is geared only towards the computation needed.

One disadvantage of special purpose machines is their inflexi-

bility. If a different faster algorithm for LU factorization is

needed, the whole machine has to be redesigned and rewired. Also, in

Special Cases , for example, sparse matrices which cannot be ordered

in the block diagonal form may require complicated hardware circuitry

in the special purpose machine as opposed to changing the software

programs in the general purpose machine. Thus, there is a hardware

versus software tradeoff between the two implementations.

Because of the inflexibility Of special Purpose processors, a

well designed algorithm is an important starting point. However, a

good algorithm for VLSI implementation may not necessarily be one

requiring minimal computation. VLSI implementation is preferred for

special purpose processors to reduce difficulties in reliability,

performance and heat dissipation that arise from many SSI and MSI

components. VLSI technology enables faster communication and more

accurate system clocking due to the effect of scaling all components

to several transistors and several metal and poly lines. VLSI also

enables more modularity and programability because of the cost-

effectiveness of the design.
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In summary, the criteria for special purpose machines are:

1. The design must be implemented by only a few different types of

simple cells to out down on design cost.

2. Its architecture must be based on a simple and regular data and

control flow that can be connected by a network with local and res-

ular interconnections.

3. It must fully utilize pipelining and multiprocessing. Several

data streams can move at a constant velocity over fixed paths in

the network, interacting at cells where they meet.

4. A large number of cells are active at one time so that computa-

tion speed can keep up with data rate.

S. The simple cells are identical and connected in a regular

fashion to increase modularity and extensibility for different

matri ce s.

Considering the above advantages and disadvantages, two dif-

ferent multiprocessor arrays, the systolic array and the wavefront

array processors, are compared for their effectiveness in parallel

proce ssing.

2.3. Special Purpose Architecture

.3 .1. Systolic Array Processorg

The systolic array is chosen as the special purpose machine for

discussion because it satisfies all the criteria listed for

performance/cost effective special purpose machines. Also, systolic

arrays facilitate VLSI implementation by encouraging modular design

. - . .. ......... .,
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and local communication whereas many other special purpose machines

that have been proposed (7,10] usually require LSI/MSI parts with
L-o

massive controls and complicated hardware.

The term "systole' means a rhythmically recurrent contraction,

especially the contraction of the heart Sy which the blood is forced

onward and circulation kept up. This is analogous to the systolic

array idea.

A systolic array processor consists of an array of simple pro-

cessors connected together locally with inputs and outputs connected

to a bus which is controlled .by a host computer. The systolic system

rhythmically computes and passes data through the system. All the

inputs in the systolic cell move to the adjacent processor of the

cell during each beat. The computation is then done rhythmically

(i.e., depending on the beat) and the result is shifted as input to

the next cell in the next beat. This is the basic data flow of the

architecture.

According to S.Y.Kung [13], a systolic array must have the fol-

lowing properties:

1. Synchrony: The data transfer and computations must be controlled

by a global clock.

2. Regularity: The array must consist of modular processing elements

with regular and spatially local interconnections. Moreover, the

network must be extendable.

3. Temporal Locality: At least one unit time delay must be allotted

so that signal transactions from one node to the next can be

. . . . . . . . . ..
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completed.

4. Linear-rate Pipelinability: The array must achieve an O(n)

speedup, where n is the nmber of processing elements.

S.Y. Kung [131 has also devised a systematic way of systolizing

an algorithm. A signal flow graph (SFG) is constructed to represent

the input and output relationships of an algorithm. Then the basic

operation module is selected. After that, two cut-set (temporal)

localization procedures are applied:

Rule (i): Time-Scaling: all delays may be scaled by a single positive

integer.

Rule (ii): Delay-Transfer: advance k time units on all the outbound

edges and delay k time units on the inbound edges, and vice versa.

In the final step, combine the delay of the operation modules with

the module operation to form a basic systolic element. All the extra

delays will be modeled as pure delays without operations.

The signal flow graph for LU decomposition is shown in Fig. 4.

Its corresponding systolic array is shown in Fig. 5. The array is

organized like a honeycomb in a rhombus shape. The following func-

tions are performed by each cell:

Aout = Ain - Lin * Uin

Uout - Uin or Ain (at the boundary)

Lout = Lin or Ain/Uin (at the boundary)

The number of cells needed in this topology is equal to the number of

elements in a full matrix, e.g., for a full 4 x 4 matrix, 16 cells

are needed. For a banded matrix, the number of cells needed is the
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Fig 4. (a) An SFG for LU decomposition. (b) The detailed diagram
of the processing nodes [14].
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width of the first row times the height of the first column of the

matrix. Only 1/3 of the coils are performing computation at each

clock cycle while all of them are actively shifting data of some

$or t.

Because it is difficult to control the pipeline of sysatol ic

arrays, lai Hwang [6] has proposed a rectangular implementation that

uses n cells less for an n x n matrix but computes the LU factors

faster than the above method. The speed is accomplished by utiliz-

ins more cells for computation at any given time. This method is

different from the systolic array because interface latches are used

to store intermediate results instead of using registers in cells.

As a result, synchronization of data is very crucial in systolic

arrays whereas data can be stored in the latches in the Hwang method.

The interconnections and inputs of this topology are as shown in Fig.

6. The number of cells needed by the 4 x 4 full matrix is 12, which

is less than the regular systolic array.

2.3.141. Advantates of Systolic Arrays

The systolic cell maximizes the use of input data fetched from

memory with modest 1/O bandwidths for outside communication with the

host. This is done by inputting data at the appropriate cell at a

regular rate and then shifting the data to the appropriate processor

for computation. Thus, no multiple memory access of the same data is

needed and no additional complex address calculations are required to

retrieve data. When the memory speed is larger than the cell speead.

two-dimensional systolic arrays are used because at each cell cycle.
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all the I/O ports on array boundaries can be input or output data to

or from memory. Memory bandwidth can be fully utilized and substan-

tially reduces processor-memory traffic (memory access bottleneck) in

comparison to that required in other architectures.

The algorithm on which the hardware of the systolic array is

based fully exploits parallel-pipelined processing and speeds up

compute-bound computations. Multiprocessing many results in parallel

is achieved by converting the output (Aout) as input (Aim) to the

next cell, and computation of each single result within the cell is

also pipelined. Thus the systolic cell is a two-stage pipeline.

System cycle time is the time of a stage of a cell and not the whole

array of cells at cycle time. Very fast computation, up to 200 Mflops

(million floating point operations per second) (3], can be achieved.

The cells are also simple and identical. The cell can basically

consist of shift registers or latches, a multiplier, a reciprocator -

and an accumulator. A local memory may also be included to store

intermediate operands and results. Data and control flows are simple

and regular as shown in the Kai Ewang [61 systolic array.

The design of the systolic cell is completely modular and

expandable with no difficult synchronization. Additional cells can

be connected together in the same topology for larger matrices. In

fact, as the number of cells expands, system cost and performance

increase proportionally if the size of the underlying problem is suf-

ficiently large.

.7
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One other advantage of special purpose machines over general

purpose machines is that the software overhead associated with opera-

tions, such as indexing, are totally eliminated.

* 42-241. Disadvantages gf Systoli Array

Global synchronization, however, could be a disadvantage as the

size of the array increases. While an asynchronous model incurs a

fixed time delay overhead due to the handshaking process, the syn-

chronous time delay is primarily due to the clock skew which

increases with the size of the array. Even in an H-tree clock dis-

tribution [8] which maintains the same on-chip clock line length to

each of the N x N modules, the clock skew grows at a rate of O(N3 ).

In addition, the systolic arrays are rather inflexible to changes in

the algorithm, for example, the partitioning of sparse matrices into
-'

block diagonal form for higher concurrency may lead to interconnec- -*

3tion hardware that is extremely complex to design, whereas solving

the huge sparse matrices using unpartitioned matrix systolic opera-

tion is a waste of processor and waste of computation time as most

elements are zero elements unless the matrix is banded. Even for

banded matrices, there is a limit of 4n on execution time [131.

Interconnection of the subatrices of sparse matrices , if effi-

ciently solved in hardware, may lead to special purpose machines with

very high throughput. Several schemes that are not systolic in

nature have been proposed. They are the LU unstructured sparse

matrix machine by Pottle [71, partitioned matrix by Hwang and Cheng

(10] and the Blossom System by Sangiovinni-Vincentelli [1]

I _

..... ...- . .
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,.1. Timin Analysis and Numbe of Processors

Four schemes used for LU factorization are considered:

1. Regular LU banded matrix

Decomposition: T - 3n + min(r.s); N = rs

Triangularization: T - 3n; N - (n2 + n)/2

2. LU unstructured sparse matrix by Pottle

T - nl; N )= dmax

3. Partitioned matrix algorithm by Hwang and Cheng

T - O(n) or O(n/m); N- O(n) or O(Nm)

4. Blossom by Sangiovanni-Vincenteli

T = 0(n/x) for full matrices, else O(Nwh); N x x

where,

T is the time complexity

N is the number of processors

n is the maximum size of the matrix -

r+s-1 is the bandwidth of a banded matrix

r is the width of the first row of the banded matrix

S is the length of the first column of the banded matrix

1 is the mean degree of columns of a sparse matrix

m is submatrix size

w is the original border width

h is a function of x and m

dmax is the maximum number of nonzeros in any row of the operand

The hardware suggested by Pottle [7] is difficult to design and

involves a great deal of control signals and local storage. More-
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over, there is not enough information on the processor array used in

the Blossom system [1]. However, the systolic array and the Hwang

(6] scheme are easy to control and to design. The systolic array is

more suitable for banded matrices while the Hwang [61 scheme is

better suited for full matrices. However, in our applications, the

matrix is assumed to be partitioned into submatrices so that each

submatrix is nearly a full matrix.

I . . Wavefron Arra. Processor Architecture

The wavefront array processor (WAP) is configured in a square

array of NxN processing elements with regular and local interconnec-

tions (Fig.7). The computing network serves as a (data) wave-

propagating medium. The computational sequence starts with one ele-

ment and propagates through the processor array, closely resembling a

physical wave phenomenon. A second wavefront can then be pipelined

immediately after the first one propagates. Also, wavefronts of two

successive recursions of the software loop will never intersect

(Huygen's Wvefront Principle) [13] because the processors executing

the recursions at any given instant will be different, thus avoiding

any contention problems.

According to S.Y. Kung [13], a wavefront array is a computing

network which possesses the following properties:

1. Self-Timed, Data-Driven Computation: The network is data-driven,

i.e., the computation is fired as soon as the data arrives; thus, no

global clock is needed.

2. Modularity and Local Interconnection: This property is the same

. . . . . . .. . . .
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as the systolic array, except that the wavefront array can be

extended indefinitely without global synchronization problems.

3. O(n) Speedup and Pipelinability: similar to the systolic array.

Thus, the only major difference between the wavefront and sys-

tolic array is the data-driven property. Therefore, temporal local-

ity is no longeL needed in the wavefront array and thus the wavefront

array is faster and easier to program.

To perform LU factorization, each recursion consists of a main

wavefront and an alternate wavefront. The main wavefront computes Li

at the (,i) processors and sends it left to form the colamns of L in

V the left memory modules. It also computes Ui at ti'- (1,*) processors

and sends it up to form the rows of U. The ,0, means all the @le

ments in a particular row or column indicated. In the interior pro-

cessors, Ai = A(i-l) - Li * Ui is computed. The main wavefront must

also send the new Ai's up. The alternate wavefront sends Aij down

and left. After the first pair of wavefronts is initiated, the

V- second pair can be pipelined immediately. *1
S.... Advautages and Disadvantaaes of Wavefront Array Proces-

sors

The WAP has the advantage of the systolic array in the fact that

it is very modular and with local interconnection. However, a wave-

front architecture can also provide asynchronous waiting capability

and consequently can cope with timing uncertainties such as local

clocking, random delay in communications and fluctuations of comput-

V .
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in$ times. Thus, the notion lends itself to a (asynchronous) data-

flow computing structure that conforms well with the constraints of

VLSI.

The wavefront notion drastically reduces the complexity in the

description of parallel algorithms. The mechanism provided for this

description is a special-purpose, wavefront oriented language.

Rather than requiring a program for each processor in the array, this

language allows the programmer to address an entire front of proces-

sors. This solves the problem of programmability and extensibility

of systolic arrays.

The WAP shares a key concept with data-flow machines: the

arrival of data fires each processing element (PE), which subse-

quently sends relevant data to the next PE. The WAP can be regarded

as a homogeneous data-flow processing element. The '"YAI" for data

feature, provided by handshaking, allows for the globally asynchro- -

nous operation of processors, i.e., there is no need for global syn-

chronization. Scheduling and synchronization are built at the

hardware level. These qualities make the WAP very appealing for VLSI

implementation as well. Figs.8 and 9 show the difference between

synchronous and asynchronous handshaking. Fig. 10 shows the delay

modules for two adjacent asynchronous modules. The loop delay. dA,

is the time delay between servicing successive data bits for the

asynchronous architecture. It is given by [8]:

dA - 2dL + dF + dP

where dL = propagation delay of the combinational logic
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Fig. S. Crossbar interconnection network using asynchronous
modules [8]. RD is used for logic 0 data and R1. for

* logic 1 data. A is the acknowledge signal.
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dF = propagation delay of the feedback path

dP - propagation delay along the request path from

module i to module j

However, the synchronous delay module as shown in Fig. 11 is given

by:

dS - dL + 2dM + dP + dC

where dl - propagation delay of the memory elements

and dC - dci - dcj - clock skew

Thus for large dP, the synchronous system data rate is higher than

that of the asynchronous system whereas as the clock skew is

increased, the asynchronous system is better.

In conclusion, the WAP is an optimal tradeoff between globally

synchronized and dedicated systolic array and general purpose data-

flow multiprocessor. The Hwang (rectangular) configuration of the

systolic array is analogous to the WAP . The difference is that

input data is synchronously fed into the array in the Hwang implemen-

tation whereas in the WAP, the network is data-driven. However, the

asynchronous handshaking and the wavefront language based programming

control can be implemented for this rectangular systolic array.

Thus, the rectangular configuration is chosen for analysis of the LU

factorization of both normal bordered block diagonal form (BBDF) and

nested BBDF matrices. This thesis describes the design of a parallel

processor array for LU factorization by modifying and combining the

traditional systolic array, the Hwang implementation and the wave-

front array processor. This modified design has the characteristic
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of the systolic array because within each level of the processor

array, the data are fed in a synchronous manner, each beat being con-

trolled by a system clock. The Hwang implementation of the interface

latches are used because more processing elements are then utilized

for computation. In addition, the asynchronous handshaking scheme is

very useful for taking care of the irregularity of the outputs from

the previous processing level. The asynchronous handshaking only

needs to take place at the cells located at the edge of the processor

array where the input data are fed. The software progrm can Sen- -

erate an input data valid flag to start the wavefront of input data

at each clock pulse. The Appendix gives the VLSI design of such a

semi-synchronous pr'ocessing element. It is semi-synchronous because -

it has both a system clock and asynchronous handshaking signals. The

asynchronous handshaking is basically needed as the outputs of a cer-

tain level of processor array flows as inputs to the next level.

This is because the processing elements may not produce the outputs

in the pattern needed as inputs to the subsequent levels.

~o .
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1. Characteristics of the Matrices

Most of the matrices in circuit simulation progrms are large

and sparse. Each node in the circuit is connected to a mall subset

of nodes. Thus, the circuits can usually be ordered into Bordered-

Block Diagonal Form (BBDF) [5].

M1 0 0 0 Tc 1 Y1.

0 M2 0 0 Y2c 12 Y2

0 o 0 Nk Tkc 1k 1k

Yl Yc2 0 Yck Ycc Vc Ic

Parallel processing can be utilized by finding the LU factors of

all the subcircuits at the same time and then the results are

automatically merged properly together to form the interconnection

level. The following matrices are then factored in parallel:

• Ml Ylc M2 Y2c .... k Ykc]c
+ Yel 0 Yc2 0 :... Yk 0..

As discussed in the previous section, a systolic approach can be

used in the architecture. Two implementations of the mesh connec-

tion are studied: the Hexagonal systolic array by Kung[4] and the

~b
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rectangular network by Hwang [6]. It is found, using hand simula-

tions, that the Hwang [6] scheme takes advantage of maximum processor

utilization as well as taking fewer clock cycles for processing the

matrix. The hexagonal systolic array can also be described as a rec-

tangular array. However, the difference between the Hwang [6] method

and the regular systolic array is in the use of interface latches in

the Hwang [6] method so that the timing is different between the two.

A modified scheme of these two methods is studied in the next sec-

tion.

The partitioned matrix is better suited for parallel processing

than the banded matrix. It can be seen from a comparison of the time

it takes a regular systolic array to compute the LU factors of a

banded matrix and a BBDF matrix (Fig. 12). As p and q gets << n and

as m gets larger, t(partitioned) < t(banded). Using the systolic

array by H.T. Kung [4],

t(band) = 3n + min (p,q) - 3n + p

Assume q is either larger or equal to p.

t(partitioned) < t(sub) + t(int)

t(sub) - 4[p+n-mp]

t(int) ( 4(n--mp)

Assume summation level is done almost simultaneously. Also, assume a

full matrix at the interconnection, whereas most of the time, the

interconnection can be ordered as a band matrix.

t(part) - 4[p+n-mp+n-mp] = 4[p+2n-2mp]

One of the problems is to find the optimal number (W) of subcircuits

.............
. . .. . . . . . . . . . . . . . . . . . . . . . .
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to divide the entire circuit.

For t(band) )- t(partitioned)

3n+p )- 8n-8np4p

(8-3)p >- Sn

Thus for the partitioned matrix to be faster than the band matrix,

make p and m large.

If the interconnection subcircuit is a band matrix, each border node

depends only on w nodes (Fig. 13).

t(sub) - 4[p+w]

t(int) - 3[n-up]+r

t(part) <t(sub) + t(int) - 4(p+v) + 3(n-mp) + r

t(band) - 3n+p

For t(band) >- t(part)

3n+p >- 4(p+w) + 3(n--mp) + r

3p(m-1) >- 4w + r .

For example, given r-1, p-2, w-i

m >=-5/6+1 e.g. m = 2,3,4,....

However, the problem with the normal BBDF form of matrices is -,

that the interconnection matrix and the border can get very large and

sparse. Then, the control of data from the subcircuits to the inter-

connection level can be very complicated. Thus, an algorithm for

partitioning the matrix is investigated. The algorithm uses a clus-

tering procedure to obtain a 'nested' partitioned matrix form. The

reason that the clustering algorithm can be useful is that most cir-

cuits considered are only connected to a few other nodes. So one can
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always divide the whole circuit into subcircuits which are connected

only through a relatively mall number of interconnection nodes.

The matrix is divided into BBDF in a nested manner, starting

with 2 subatrices, then 22 matrices up to 2d matrices. Each subma-

trix is also in BBDF. This method is used to simplify the intercon-

nection level logic. With the original BBDF, the border can get

very large but sparse. To utilize the sparsity maximally requires

very complicated and sometimes irregular timing controls. However,

using a nested algorithm, even though more mesh layers may be needed,

the synchronization of data is very simple.

3.2. The Nested Clusterina Alo

The problem with any heuristic clustering algorithm is the

uneven size of the subcircuits. This can be remedied by patching the

circuits with 's on the diagonal and zeros everywhere on the extra

rows and columns (Fig.14). The tearing nodes chosen may not be the

minimum and may not give the most identical number of clusters since

a certain small number, a , has to be chosen around the vicinity of

max allowed for each level of nesting. The clustering algorithm is

performed by the following procedure, and is a modification of the

algorithm given in [14]:

1. Choose initial iterating node [S(1)] with minimum degree.

2. Store in adjacency set [AS(1)] all nodes that are adjacent to the

node in IS(M).

3. P1 Lce the cardinality of AS(l) in CN(1).

- - - -. . "."-"" "" .""-. "
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Fig. 14. Changing the size of matrices by adding l's and O's.
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4. Let i-1.

5. If CN(i)-O check if any node is not covered yet. If all the nodes

are considered, stop; otherwise, continue.

6. Choose next iterating node, n(i+l), frcm AS(i) and place it in

IS(i+1) by a greedy strategy with minimum O(i+l).

7. Update AS(i+1) from AS(i) by deleting the node n(i+l) and adding

all new nodes that are adjacent to n(i+l) that are not already in

AS(i) or in the union of the sets IS(j) where j equals 1 to i.

8. Put CN (i+l) IAS(i+l) I .

9. let i= i+1.

10. Go to step 5 until rn/21 nodes have been selected. Then choose

the node, k, between umax + s that gives the minimum CN. a is the "

smallest integer that can give the minimum CN. All nodes 1 -> k form

a cluster with all the nodes in the adjacency set as tearing nodes.

11. Now for the first cluster, divide the cluster in half again as

in step 10. Repeat step 11 until the clusters are at a minimum size.

12. Also, delete the first cluster and its tearing nodes and con-

tinue steps (6) to (10) for the second cluster. Repeat step (11)

until the clusters are at a minimum size.

Refer to-Figs. 15a, 15b, and 16 for an illustration of the aigo-

ritha. The clustering algorithm is a software solution to organizing

the interconnection nodes in groups before processing through the .

processor array. Using the nested BBDF, more parallel processing can

be done with simpler interconnection, as is shown next.

.,... ."
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Fig. 15.. The nested clustering algorithm splits the entire circuit
in half in the first step.

* * Fig. 13b,. Then each individual cluster is furthur split in half
during the next recursion.
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1 1 2,5 2 -
2 2 5,3,6 3
3 5 3,6,9 3
4 3 6,9,4,7 4
5 6 9,4,7,10 4
6 9 4,7,10,13 4
7 4 7, 10,13,8 4 Bottleneck Nodes (7,10,13,8]
8 7 10, 13,8,11 4
9 10 13,8,11,14 4

10 13 8, 11,14,17 4
11 8 11, 14, 17, 12 4
12 11 14, 17, 12, 15 4
13 14 17, 12,15, 18 4
14 17 12, 15, 18, 21 4
15 12 15, 18, 21, 16 4 Bottleneck Nodes [15,18,21,16]
16 25 26,29 2
17 26 29, 22, 30, 27 4
18 29 22,30,27 3
19 22 30,27,23 3
20 30 27, 23, 31 321 27 23, 31, 28 3
22 27 3 31,281 4 Bottleneck Nodes [23,31,28122 23 31, 28, 24, 19 4
23 31 28,24,19,32 4
24 28 24, 19,32 3
25 24 19,3220 3
26 19 32,20 2
27 32 20 1
28 20 0

Fig. 16. Example of the nested clustering algoritha being used on
a grid circuit.

21o

.*-*. ,*... ..-. ...



45

Io3. Det of _th Modified Systolic Arra

The hexagonal systolic array is orgranized in a honeycomb shaped

mesh. Its topology can actually be implemented in a rectangle. The

S. data flow of such a rectangular systolic array will still be the same

as the hexagonal topology. The four diagrams shown in Fig.17 [13]

illustrate the data flow of such a systolic array. Input data is fed

along the diagonals of the matrix. The L factors are then taken from

the left-hand edge of the network while the U factors are taken from

the right-hand edge of the network. For the given 30 x 30 nested
L.

BBDF matrix, the input timings are shown in Fig.18. The numbers

indicate the time that the input data at the corresponding position

are fed, e.g., element (1,1) is fed at time ti. The output timings

are shown in Fig. 19. The numbers indicate the time that the output

comes out of the processor array.

The inputs are fed along the diagonal of the matrix with the

diagonal element first, followed by the rest of the elements along

the diagonal. Zeros are fed in at the location of the interconnection

level at each of the subcircuits. After all the subcircuit data-

independent elements are fed into the array, the rest of the zeros

are fed in with all the diagonal elements at the same time. Note

that the input data streams are separated from each other by a clock

pulse. At the interconnection location, the partial sums, Z Lik

Ukj are carried out.

To insure the correct timing, an asynchronous handshaking scheme

is incorporated on top of the synchronous data sequencing. No

* * * . *~- .. ... *-* .. *
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Fig. 17. Four steps during the LU-decouposition of the matrix
shown in Fig. 5 [13].
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Fig. 18. Input timing for LU decomposition using systolic arrays.
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computation, i.e., multiplication and addition, is done until the

input data, A, L and U, have their input valid flags on. This dis-

tinguishes the normally zero input data elements from the ones at the

interconnection location. Also, the partial sums I LOU are taken out

at different points on the network following a certain pattern. They

are then fed into modules which add up all the partial sums from the

different parallel subeircuits. The number of interconnection levels

depends on the depth of the nested BBDF. Fig. 20 shows the overall

configuration of the LU factorization network. w

The number of processors used are:

Basic Level: (m + d*i) 2

Interconnect 1: (m + (d-l)*i)2

Interconnect 2: (m + (d-2)Isi) 2

Interconnect d: (m + t)

i = size of interconnecton network (border)

d - depth of the nested BBDF

m = size of the subcircuits

Hwang's scheme for LU factorization is also modified and then

applied to the nested BBDF matrix. Both LU decomposition and forward

substitution are very easily combined together into the same mesh

connected network. The configuration and the input-output timings

for a 4 x 4 matrix are shown in Fig. 21.

To solve A - LU and Lz - y, the y vector is put in as an extra

column in the A matrix. Then the elements of the matrix are fed into

the array, one column at a time. A '1l is fed in at the diagonal
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L2  L3

U2

U4

Inputs: t, 0 0 0 0 a,1  821 831 841

t, 0 0 0 0 1 0 0 0
t 3  0 0 0 a,, 812 a3 2 a. 0
t4  0 0 0 0 1 0 0 0
t5  0 0 a,3  a23 a33 a43  0 0
t6 0 0 0 0 1 0 0 0
t7  0 a84 a244 a34 a4,, 0 0 0 -

ts 0 0 0 0 a 0 0
t9 '/1 Y2 Y3 Y4 0a 0 0

Outputs:

U1  U2, U3  U, U, Lime L, L_________

U11  0 0 0 0 ts 0 0 0
1U 12  0 0 0 t3  121 13 41

U12  0 U13  0 0 t, 0 0 0
1U 23  0 U14  0 C 12 1,, 0

U3Z 0 U24  0 Z. t 9  0 0 0

U34  0 Z2 0 t, 0  143 0 0

U44  0 Z3  0 0 t. 1 0 0 0

0 Z, 0 0 0 I2 0 0 0

A L'j 3no L =Lz

Fig. 21 . LU decomposition and forward substitution using the
modified Hwang method on a 4 x 4 full matrix.



input position every other clock pulse so that a delay can be put in

between two input columns without the elements being changed in the

network. The L factors then cone out on the upper edge and the U

* factors from the left edge. Asynchronous handshaking is also applied

here, except that the partial sus are taken out right before they

enter the division cells on the top row and along the U output

latches on the left edge. The partial sums of all the subeircuits

within each level are then added to the matrix input elements. The

results are the inputs to the next level. The dark lines in between ,',

the cells are interface latches to hold inputs and outputs until the

next clock pulse arrives. Note also that the system clock must be

long enough to accommodate for the time it takes to do the computa-

tion or the time it takes to shift the input data to the output. The

input and output timings for a 30 x 30 nested BBDF matrix are shown

in Figs. 22 and 23, respectively.
p

For each mesh connected array for LU decompostion (Kai Hwang[10]):

2 nNumber of required arithmetic cells = n - n

Number of I/0 terminal - 4n - 2

Startup time delay(time delay to Set the first output) = n- 1

Array not compute time - 2n- 1

Total compute time - 3n -2

If forward substitution is included in the same processor array,

together with LU decomposition, the following modifications occur.

For each mesh connected array:

Number of required arithmetic cells - (n+l)(n-l)

[.
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y

911 1315 1 7
1 3 5 7 911 1315 17

1 3 5 7 --T-- - 13 15 17
1 3 5 7 911 1315 17

1416 1820 2224 26
1 3 1 3 1416 1820 22 2 16

13 5 7 911 1315 17

I 1 3 5 7 911 -1315 17
1 13 15 i17
1 3 57 911 1315 17,

T 14 161820_ 224 17

I 1,31 3 14 1618 20 _2224 26
13 13 14 16 1 3 [1 3 141625271 29 31 33 "

1 3 1 3 1416 1 3 11 314162527 2931 33
- 3 5 7T 911 13 15 17

I 1 3 57 911 1315 17
1 13 57 1-1 15 17
1 3 5 7 911 1315 171I,1313 1416 1820 224 26

13 13 1416 1820224 26

I 1 7 911 1315 17
1 3 5 7 911 1315 17

1 1 5 7911131 di5 17
I I1 135 911 1315 17,

13 13 16 1820 2224 26
13 1 3 1416 1 3  1I 311416 52712931 ,,

3 1416 1 311 31141625272931 33

13113 1416 1 3 [1 3  14162527 13 1 3 141613113 125271436 38
13113 1416 13 13 14162527 1311 3 14161 311 3 1416 25273436 38

Fig. 22. Input timing for LU decomposition and forward substitution

using the modified Hwang method.

71.
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10 1211 122-22242 2,2

;I

-...

910 1112 1314 1516 17
1011 1213 1415 1617 18

910i1 1 1 1 3 14. 1516 17
10111213 14. 1617 18

101201012 021 2223 2425 26
101201012 1 22 2324 2526 27
0 2 10 11 12 13 14 156 17 3

91011 12131415 16 17 1
10910 111213 13 1516 17

1.011o t12 13 14 15, 1213 1 1617 18
I 1112110 20212 2 32425 26

1012001221222324 12121222 2526 27•1012j1012 21231012110122 123 29 30 3132 3
02101231110213031 -- 3233 34

9 11 112 13 11516 17
1011 1213 14151617 18
901 1 31 1516 17

I 10 11213 14 151617 18

0I 10 12110 2 21 2223 2425 26
I 10121012 1 221 3242526 27I i910 111213141516 17

0 i 10 11 1213140 1561731

,o ,, 2 1 r,,,
UI I I 910 112311= 1617

I I I ,o ~211o 20 2122 232425 26,
". I I , 10 12110 122122 23 2 2526 27i

10;1 23 10 12.10 1 2129 3303132 33
I I3____i ____ 10121101212310121012212330313233 3

0 12110 1221 23110 12110 12 1 2 3032 10 12110 1 223 1 1-02110 12 21 2330.32 637 38

l O 12110122123110121101 212 30 32 10 1211012 1231101211012 2123P3032 738 9

FP.3231

Fig. 23. Output timing for LU decomposition and forward

substitution using the modified Hwang method.
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Nimaber of 1/0 terminal -4n - 1

Startup time delay - n

array net compute time - 2n

Total compute time - 3n

The system configuration is shown in Fig. 24 and the intercon-

nection for a 7 z 5 array to a 5 x 3 array is shown in Fig. 25.

Backward substitution uses a linear systolic array (Fig. 26). Solu-

tions are obtained from the bottom of the matrix up to the top.

Also, the first computation can only be done after the solutions of -

the forward substitution are obtained. The input and output timings

are given in Fig. 27.

From the results, it can be concluded that the input and output

timings of this modified Systolic scheme are more regular and easier

to control than the hexagonal systolic array. Also, fewer processors

and less time are needed to accomplish both LU decomposition and for-

ward substitution. Thus, in the following section the modified Hiwang

implementation is studied for its performance time.

*. . - . 1
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Number of Processors 2d 2d-1 2d-21

Level Basic Level Interconnect 1 Interconnect 2 Interconnect 3

Fig. 24. Processor array confiluration for the example nested
matrix.
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x

Time T lT

t39  Z3 0  0 0 0 0 0 0 0 0
t*o 0 0 0 0 0 0 0 0 0
t4  z29  0 0 0 0 0 0 0 0

t42  0 0 0 0 0 0 0 0 0
t4 3  z28  0 0 0 0 0 0 0 0
t4 4  0 0 0 0 0 0 0 0 0
t4 5  z2 7  0 0 0 0 0 0 0 0
t46  zO 0 0 0 0 0 0 0 U30.30

St 4 7 Z26  0 0 0 0 0 0 U2930  0

t4a 0 0 0 0 0 0 U .s.30  0 U29 .29

t49  z S  0 0 0 0 U27.30  0 U28.29  0

t50  0 0 0 0 U26.30 0 U27.29  0 U2.28

t5 , Z2 3  0 0 U 2 S .30  0 U 26 .29  0 U2 7.28  0

t 5 2  0 0 U24 .3 0  0 U25 .2 9  0 U 26 .28  0 U2 7 .27

t53 0 U23.30  0 U 24 ,9 0 U2S.2, 0 U 26 .27  0

t 4  0 0 U23.29 0 U24 .23 0 U25.27  0 U26 .26
t 5 0 0 0 U23.28  0 U24 .27 0 U-5 .26  0

t d 0 0 0 0 U"3.27 0 U 1-4.26  0 U 15.25
ts , 0 0 0 0 0 U 23 2 6  0 U, 4 25  0

tsa 0 0 0 0 0 0 U2-.2S  0 U,4 24

159 0 0 0 0 0 0 0 U 23.24 0

t 0 0 0 0 0 0 0 0 0 U 23 .23

Fi. 26. Linear processor array for backward substitution (Uzz).

I.

I-
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Z x

6059 5857 65 5453 153 1

58 5756 55 __ 5352 51 59
60595857 5655 5453 53 61

5756 54 5352 51 59

5655 545 5251 29 57

54 5352 51 50 47 53
60 553 53 61

5 5756 55 54_• 5352 51 59

5 6857 655 5453 53 61

57566554 5352 51 59

56 6S 4 53 5254 49 57

1 545352 5150 47 55

6251 504 45 53

501 494843 .51.

-0 ___ 15857 565 6453 53 1
5756 5554 5352 51 9

58 5756 55 54i53 52 51 9
6059158 57 56 5 4531553 sl ..

5655 54 5352 51 49 7
54 5352 5 5 47 5

059 58575655 545 3 3
58 57565554 5352 51

60 59 58 57156 55 5453 53 1
58575655545352 51 9

5655'54 53:5251 49 7
545352 51 50 47 5

5251 5049 45 3
- ."-50,4948 43 1

148474 9
_____4 _____ 43 7j

Fi 27 Backward substitution pipeline (Uxz) input 
and output

timings.

..-...-.-..-.. -,-..-..-.....-.... ...........-.-.- ' ........ ........
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3.. Performance Evaluation

Timing Analysis of the Nested Algorithm using the modified Hwang

implementation for the example nested matrix:j

Time

start input Get LU factors Got first z

Basic Level ti dxi+p -pl. tl+2pl

Interconnect 1 3pl-2(dxi)+2 t(intl)+(d-1)zi+i t(intl)+2p2

L t tintl) (d-1)xi+i -p

Interconnect 2 t(iatl)+3p2-2(d-)i.+2 t(int2)+(d-2)xi+i t(int2)4+2p3-1

-t(int2) (d-2)xi+i -p3

5Interconnect 3 t int2) +3 p3-2(d-2)i1+2 t(int3) +i t(int3) +2i-1

-t(int3)

T(LU+IFVD) -3 (di + p) + Si + 6

n- 2d x i+ di

Backward substitution 3 2 1

Total time =3*(di +. p) + Si + 5 + 32

Assume processors are very cheap so that the computation time is

the main consideration of performance. Note that this network can

compute LU factorization in O(n) time. It is thus a very efficient

processing array for LU factorization.

PA
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DIIT UMROD - OVALL S77EN OWGtOURATION

There are two main methods for solving large systems of linear

equations, the direct and the indirect method. The direct method, as

the name implies, feeds the entire matrix into the processor array in

one pass, and solves the system of linear equations. The indirect

method will be discussed in the next chapter.

The system for the direct method of LU factorization consists of

the host interface, the main memory(MM), a control unit(CU), the

memory management unit(MM), the sequencer unit(SU), the feedback

buffer(FB), the input processor switch (IPS) and the processor

array(PA). The block diagram of the system is shown in Fig. 28.

The host interface communicates with the host computer to get

the commands and data to process the LU factorization operation- The

matrices are first reordered by reordering programs implementing the

nested clustering algorithm in the host computer. The matrices are

then represented in partitioned bordered block diagonal form. The

non-zero values are then stored with their row and column coordi-

nates. Since the amount of data is large compared to the operation

set, the control signals are embedded into the data stream. Also,

the host interface recognizes only partitioned matrices and vectors,

so the host provides a data separator for each submatrix and vector

segment in the data stream. The host interface then generates a
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Main Hs

Data Bus .

SU InpuProcessorr Array

L I 2n Processors

ubs Susu st

and and : 2n.1 Processors

UL

and
Fwd 1 Processor

Bwd wdl .. 1, 2 n Processors

Fig. 28. Basic system configuration for the direct method.
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proper data representation each time a separator is encountered.

This data representation and the instruction words are then sent to

the CU while data is sent to the main memory. The host interface

tries to allocate potentially parallel data objects into different

parts of the memory hierarchy to be fetched through different ports.

The control unit (CU)decodes the host interface instructions on

matrices into sequencer instructions on submatrices and vector seg-

ments. Thus each task requested by the host is partitioned into

several subtasks which may be carried out in parallel. Each subtask

is carried out by the processor array under supervision of the

sequencer. The CU thus contains information on the number of nested

levels of paralle submatrices as well as the sizes of the subma-

trices. The control unit also sends commands to the input processor

switch to enable and disable processors depending on the size of the

matrix to be processed. It also controls the feedback buffer which

organizes the output solutions from the processor array.

The memory management unit (MMU) manages the main memory system.

A virtual addressing scheme is used because the amount of data of

each operand matrix can be very large. The operand address received

from the CU is the starting virtual address of a submatrix or vector

segment. The M computes the ending virtual address from it and

translates both virtual addresses to physical addresses. The MM is

required to fetch data for concurrent tasks from the multiport.

memory. The host interface would try to allocate potentially paral-

lel data objects into different parts of the memory hierarchy to be

.4

.' .. : .:-. -. ..- .- " -'. .. ... :. .. ...-: - .-:. .:: , : .: : : .-.. : :..' -.-: ,. . . :. :. .,. :.-: :: ,. . '.-' : :. .':,:,: . : -" - .. -. -." ., -
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fetched through different ports.

The sequencer unit (SU) adds different delays to data loaded by

the IM before sending them to different processor rows or colmns-

q depending on the size of the suluatrices. The delays are synchron-

ized by a system clock which controls the processor array.

The input processor switch (IPS) receives instructions from the

control unit to determine which processor elements are enabled

according to the size of the matrices. Then the input data are then

automatically switched from the SU to the appropriate processing ele-

ent.

The feedback buffer (FB) is used when the data output from the

processor array is re-sent to the processor array. It also arranges

the outputs in an organized fashion to be sent to the AM for virtual

address translation.

, The processor array (PA) has been discussed in the previous

chapter. The array is controlled by instructions from the CU as

well. The processor array shown is the semi-synchronous implement&-

tion for the nested BBDF matrices. The processor array is comprised

of planes of processing elements; each subsequent plane takes care

of the interconnection between two previously parallel arrays for LU

factorization and forward substitution. The results are then fed
1S..

into processing elements used for backward substitution.

This chapter gives the general description of each of the blocks

in the special purpose machines used for LU factorization in the

I..
. . . % . ~ '
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direct method. The details of these blocks still need to be

do i gaed. -
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MAP=l 5

IE MOD""

An alternative method for solving large systems of linear equa-

tions is an indirect method, such as the Gauss-Seidel [16] relaxation

method. Special purpose hardware can also be built to accomplish

this algorithm instead of having it done in software.

The block diagrm of such a system is shown in Fig. 29. The

indirect method first makes a guess on the values of the interconnec-

tion nodes. The partitioned submatrices from 1 to k can then be

evaluated using LU decomposition, forward and backward substitution.

The nested clustering algorithm for partitioning matrices is no

longer needed. The matrix can be partitioned in normal BBDF form.

The following equations are solved in parallel:

(LI S Ul) X - 1 * Xt

(Lk * Uk) xk = Yk - Pk xt

where xt is the initial guess. Then, the solutions x, to xk are used

to compute the values of the interconnection node.

t W Yt

(L t ~~t != y1- il P i  i' %

After the new values of the interconnection node are computed, they

are compared to the previous guess. If the solutions are off by more

..........................................................-- ,....
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than the tolerance allowed, then the now zt s are used to re-evaluate

the values of x to xk until the solutions converge. Latency can be

explored If some of the values of z1 to xk are vithin the tolerance

allowed.

The difference between the indirect and the direct method is

that the submatrices are completely decoupled from each other in the

indirect method because an initial guess for the values of x, the

interconnection node values, is made. Since each submatrix is con-

. nected to another solely by the interconnection nodes, decoftpling as

a result of guesses, solves the problem of the complexity of control-

ling the interconnection. However, vector multipliers and subtrac-

tors must be added to ompute the solutions A A processing element

for LU decomposition can be used to find y1 - Pi 'st whereas a for-

ward substitution array made of the same processing elements can be

*n used to obtain yt - T-l P xi .  In addition, a comparator must be

used to compare the values of z. with the previous iteration to check

f or convergence.

The direct and indirect method have different applications. If

the circuit is approximated with a simplified model, e.g., in RELAX

- and SPLICE, the indirect method is faster because the solutions con-

verge quickly. However, there are inaccuracies in the solutions. In

most cases, these inaccuracies are trivial. The indirect method con-

verges quickly for circuits with very few couplings. However, if a

detailed model of the circuit or some complex circuits such as analog

.. .

-. - ."-S ..-......-. . -.-.- ,..-. , . . .. ". . , .-. . ..".'-.. . . - - - - ..-. . . . . _. _' .. " ' . ' ,,..,,.
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70

circuits or digital circuits with parasitics, are to be analyzed.

then the direct method , e.g., the one used in SPICE [18], is faster

and more accurate. Using the indirect method for this application

may lead to solutions that do not converge. Thus, both the direct

and indirect method are used depending on the types of circuits to be

solved.

. . ......... .
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This thesis is a preliminary investigation into a computer

architecture to be used for solving large systems of partitioned

sparse matrices repesenting the connections of electrical circuits.

A highly concurrent parallel architecture Is proposed. It is

expected to be a powerful tool which is aimed at speeding up the LU

factorization of these matrices in order to solve the equations.

1.-.

A special purpose architecture is chosen over a general purpose

architecture. There are many advantages and disadvantages of both

types of architectures. However, in spite of the inextensibility of

the special purpose architecture, the special purpose architecture is

simpler to design and is sufficient for our application. This type

of architecture can offer a faster speedup because no time is wasted

in decoding instructions. Three different types of special purpose

array processors have been studied and compared: the systolic array,

the Hwang processor array and the wavefront array processors.

In order- to achieve maximiin concurrency, the matrix is best

ordered in a nested bordered block diagonal form. A modified clus-

tering algorithm is presented based on a heuristic method of ordering

r these sparse matrices. However, using this algorithm, the number of

p.

rclusters (or submatrices) that result are always in powers of two.

The LU factors at the borders of these nested qDF matrices are
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easier to solve than the normal BBDF. This is because the intercon-

nection nodes are also decoupled using this method, thus making the

borders of the subatrices a small size. Separate processor arrays

can be used to evaluate the LU factors as well as performing the for-

ward substitution of all the subatrices at the lowest level. The

results of two different submatrices can then be sured together and

become input to the interconnection processor array in the next level

until the entire matrix is computed. Backward substitution can then

be applied to the resulting matrix.

In order to facilitate VLSI implementation to reduce cost and

computation time as well as to simplify control, a highly modular

computing structure with local communications is probably the best

strategy. All of the three processor arrays mentioned above, namely,

the systolic array, the Hwang processor array and the wavefront array

processors have these properties. The systolic array uses a synchro-

nous data flow. The processing elements are all identical with local

interconnections. The Hwang processor array uses latches at the

border to latch inputs. The wavefront array processors use an asyn-

chronous handshaking scheme for local communications. The synchro-

nous scheme creates problems as the clock skew grows due to the

increase in the size of the processor array. However, the asynchro-

nous scheme may cause race conditions and data conflicts if the data

is not synchronized correctly. The Hwang processor array makes max-

imu use of processors; however, latches must be used at the border.

This destroys part of the simplicity and regularity of the data con-
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trol. To compromise between all the tradeoffs of these architec-

tures, a modified scheme is designed to incorporate the characteris-

tics of all these types of processor arrays. The processor array

proposed uses a synchronous data flow to input and output data at

each submatrix. A system clock is used to synchronize the data.

However, certain handshaking signals (input and output valid flags)

are also used so that the computations will not be done unless these

flags are present. This scheme essentially adds in wait states and

is useful when the outputs flow from one level to the next intercon-

nection level. Several problems , however, may arise. Race condi-

tions and conflicts may occur. The data must be able to be latched

in each processing element long enough before all the valid signals

are present. Also, the input data must be monitored so that data

will not be overwritten while waiting for the valid signals.

The Hwang VLSI structures are also included in the processor

array because latches are used to buffer the data instead of using

registers inside the processing elements. *This implementation offers

maximum processor utilization. In addition, the inputs are fed in

column by column and are thus easily controlled. The processor array

proposed can solve LU decomposition and forward substitution in O(n)

time. Backward substitution is implemented by a linear array which

can also compute in O(n) time.

There are two methods for solving a large system of linear

b equations, the direct method and the indirect method. The direct

method solves the entire matrix in one pass. The indirect method
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guesses at the values of the interconnection nodes initially to solve

for the rest of the circuit. Then the values of the interconnection

nodes are updated and the whole process is repeated until the solu-

tions converge. It is still unclear which method is actually better

in terms of speed. The performance of the indirect method depends on

how good the initial guess is so that the solutions converge quickly

provided they converge. A general description of the overall system

configuration of both methods has been given. This thesis deals with

the processor array in detail. The design of a single processor ele-

ment is also given in the Appendix. However, the hardware and the

software controls of the rest of the system have yet to be designed

in detail.

A simulator will be written to simulate the data flow between

all submatrices and their interconnection levels. The results from

this simulator give the time when data is input and output at all the

processing elements. These results are useful for monitoring the

control of the data for any size of matrix. A hardware descriptive

language [171, which implements the basic instruction set needed to

control the processing elements, must be defined. The language can

be similar to the wavefront-oriented language by S.Y.Kung [13], but

it should be more special purpose and simple to design. Another

simulator can then be written to describe the subroutines used to

synchronize the processing elements. This simulator describes the

sequence of instructions that each processing element recieves. Data

can be fetched from and flowed to any adjacent cells in the up, down,

S*. .. . . ..
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left or right directions. Conflicts and deadlocks can be avoided

117] if every occurrence of a FLOW <to direction> instruction of a

data sourcing PE is matched by an occurrence of a FETCH (from oppo-

UJ site dixection> instruction in the instruction sequence of the

appropriate recieving PE, i.e., every FLOW is matched both in number

of occurrences and sequencing of appearance to a FETCH in the same

phase. Data bus contention problems must also be solved. The nested

clustering algorithm can also be implemented to reorder the input

matrices. Uneven depths of clusters can be incorporated as well.
L

In terms of hardware, the processor arrays can be designed so

that they can deal with matrices of any arbitrary size, either larger

or smaller than the hardware can accommodate. Larger matrices need

to be partitioned into smaller matrices while smaller matrices are

patched with l's in the diagonal and O's in the rest of the rows and

columns. Once the software is finished, the details of all the other

blocks in the system configuration can be implemented. A floating

point processing element can be designed in CHOS so that the array

can be used for circuit simulation. The QIOS cell will contain 24

bits for the mantissa and 8 bits for the exponent. Local memory,

e.g., a RAM, can be added into each processing element. This reduces

the memory access time and can thus yield higher performance.

Fast simulation engines can be the key to improving circuit

simulation time once a good algorithm has been developed. LU factor-

ization is one of the time-consuming loops in simulation programs.

" - .... . . . . .

*. . . . . . . . .. . . . . . . . . . -~ .- ... . . .
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The design of highly concurrent parallel architectur~es f or this

application can undoubtedly revolutionize circuit simulation.
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APPENDIX: DESCRIPTION OF A PRO(SSING H.,EMNT

A 16-bit fixed point processing element (PE) has been designed

using a 3un 0(os VLSI technology. The PE accepts 16-bit operands,

with 8 bits representing the fractional part and 8 bits representing

the integer part. The four major functions that it performs are:

(1) Aij 3 -A m  Lik a Uk m

(2) L ik m

L' (L) U k  Aj Au

(4) Aij - A + Lik m + U

Function (1) performs the update of the matrix elements during

LU factorization. Function (2) solves for the L (lower triangular)

factors while function (3) solves for the U (upper triangular) fac-

tors. Function (4) is used when addition is needed at the intercon-

Unection level.

The cell basically consists of a fixed-point adder, a multi-

plier, a divider, a function decode, several muxes and latches. The

pin specifications of the chip are given in Fig. 30. The functional

block diagram of the cell is shown in Fig. 31. The cell is designed

_ in CQOS because of low power dissipation which is important in an

array of large numbers of processing elements.

The design of the cell is semi-synchronous, level sensitive and

combinational. It is semi-synchronous because Avin, Lvin and Uvin

are flag signals to enable the computation (i.e., the addition and
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* .* . . . *. -. *. . .. . . . . . . . . . . "



01 02 VDID CYl CY2
L78

8 8Lin \, / Uin '

8 LUvo=< 4 / Lo° "

uout L

SELi .. Parity

SE L0 Overflow

a jn/ aout 
i[8

a vin GND

Total Number. of Pins = 55 pins

Pin Assignment:
a=n -ah 

:
- Input/Output Pin (8 bits) SELl SELo
- ai Valid Aout = Ain - LinUin 0 0 -

- Input Pin Lout = Ain/Uin 0 1
Uin - Uk(ik) Uout = Ain 1 0

- Input (8 bits) Aout = Ain + Lin + Uin 1 1
Ui - U(k Valid

- Input 01 (Phi)
Lin - ;k (Phl)

W(k) Valid Cycle 1 (CY1) Clock Inputs
Li- lInpt(k is 2P2- Input Cycle 2(CY2)

Parity - Output Pin
-Either Adder or Multiplier Parity

Overflow - Output Pin
- Either Adder or Multiplier Overflow

Lout ( ,
Uout ( - Output Pins for Lik Lk , Ur
Aout

k~l) U (k+l), and Aik l N-1
Output Pins for Lk I an

Lvout High during CY2 and the valid signals
Uvout (Lvin, Uvin and Avin respectively) arc high
Avout - Output Pins

Fig. 30. Pin assigment of a C 0S proce&sing element.
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V r

multiplication) when the system clock goes high. It is level sensi-

tive because it responds to the logic level of the clock instead of

the clock edge. Two cycles of a two-phase clock are used for each

computation of a processing element. It is combinational because no

feedback path exists within the cell so that a finite state machine

is not needed.

The inputs of A, L and U are time-multiplexed into the circuit

because of the limitations on the nmber of I/O pins. This scheme,

however, slows down the fetching of operands. ,The entire operation.

fetching of data and computation takes two cycles. he timing

diagram of the control signals and the data is shown in Fig. 32.

During the. first cycle (CYl), phase 1 latches the least significant

bit LSB data (Ain, Lin, Uin, Avin, Lvin, Uvin) from the temporary ".

latches while the most significant bit MSB data are latched in phase

2. The L -B and MSB temporary latches are loaded in 01 and 02 of the

previous cycle 2, respectively, from the output of an identical adja-

cent processing element. Also, the input Ain and output Aout share

the same I/O pins because of pin limitation and the fact that the

next inputs are streamed from another chip at one or more clock

cycles after the outputs are generated in this chip. Thus, no I/0

conflicts should occur if data are properly synchronized in the pro-

cessor array. Lin and Uin, on the other hand, cannot share the pins

with Lout and Uout because data can be input and output at the same

time during an operation.

. .o
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CY2

Temporary Input
Latch Enable (LSB)
Temporary input
Latch Enable (MSB) .... L....4... 1 ........J..........
Input Latch
Enable (LSB)
Input Latch
Enable (MSB)

prechrge'
Function Decode vaut

Reciprocator II

Out Enable
Multiplier FO F1 P6 F1 F0 F1
Out Enable ~TC
Adder Out
Enable j hj hi T
Output Latch
Enable i LSB)
Output Latch I

Enable (MSB)

Valid Signals
eq. L-Vout

FP-8298

Fig. 32. Timing of the control signals and the data.
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A domino QIOS design (Fig. 33)is used for the function decode

instead of the conventional dual NAND and NOR gates because it is

simpler to design and takes up less area. The function decode is

precharged during 01 and CY1 and the function is evaluated when 01

and CY1 So low, i.e., when 02 and CY1 are high. Then SEUl and SELO

must be held at the same voltage until the next 01 and CYl. otherwise

the function selected will be changed during this operation. The

computation is somewhat pipelined by two different pipes.

If a multiply-addition (FO) is selected the multiplier outputs

are enabled during 02 and CY1. As soon as the ISB of the data get

latched, the computation will be done right before CY1 goes low.

Then the adder is enabled at 01 and CY2 and results are latched in

the output multiplexer (mum). The L.B of the output is generated at

91 and CY2 and the MSB of the output at 02 and CY2. If a division is

selected (Fl). the reciprocator output is enabled during 02 and CYl

and the results are processed during 01 and CY2. Then the results *1

are carried to the L latches.

No results from the adder, multiplier and reciprocator are

latched if the valid signals of all (A, L, and U) have not arrived.

After they arrive, the valid signals being passed (as output) to the i
next cell are enabled during cycle 2.

Parity and overflow are both generated by the multiplier and

adder, and when reciprocation is done, the parity and overflow of the

multiplier is output whereas those of the adder are normally being

generated.

................................ o
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SELl SELO YO Y1 Y2 Y3

YO0 0 1 0 0 0 Aout -Ain -Lin UinSEUl Funct i 0 1 0 1 0 0 Lout -Ain/Uin
1 0~ -0 1 0 Uout aAin

SE0Decode Y2 1 1 0 0 0 1 Aout - Ain +Lin +Uin

01 *CY1 VDD SELl SE LO 01 Cy1 OND

12:3 12:3 12:3 fO

fi

f 1

f3 -

fO = §ffjJF §E-L 1 -CY1 High Precharges the Nodes While
fj al SLSEO 1 CY1 Evaluates

f2 -SEL1SELO~
Q3 -SEL1SELO~

Fig. 33. Function decoder with domino QIOS design.
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Two schemes were considered for the design of the adder, a

ripple-carry and a carry-look-ahead. Ripple-carry is extremely slow

because the carry has to propagate to the previous full adder before

the full adder can perform the addition. The adder on the chip has

the following functions:

i) Ain + Lin+ Uin

(ii) Ain - Lin * Uin

Thus a three-operands to two-operands adder is put in front of a

carry-look-ahead adder. The csrry-look-ahead adder is shown in Fig.

34. The parity and overflow are also generated.

The input nuxes to the multiplier are enabled so that when the

function is PD, Uin 0 Lin is performed while Uin - * Ain is performed

when the function is Fl. The input auxes to the adder are enabled

such that when the function is not F3, then Ain - Lin • Uin is per-

formed except for F2 when the output of the adder is not used. Dur-

ing F3, in + Lin + Uin is performed and the inputs are chosen as

appropriate.

The L output is valid when the function is F1 and Avin, Uvin

and Lvin are asserted and the clock cycle is cycle 2; or function is

not F1 and Lvin is valid and the clock cycle is cycle 2. The U out-

put is valid when function is P2 and Avin, Uvin and Lvin are asserted

and the clock cycle is cycle two; or the function is not F2, but Uvin

and cycle 2 are high. The A output is valid when Avin and Lvin and

Uvin are high and the clock cycle is cycle 2.

--. 7.2_
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0 The reciprocator is based on anon-restoring division principle

reciprocator are shown in Figs. 35 and 36, respectively. Each cell

performs the functions:

z x x or [a (y xor t01

u U C xor b) (y + t) + yt

The multiplier (Fig. 37) is a two' s complement combinational

array multiplier based on Booth's algorithm [23]. The main cell is

basically the same as the reciprocator cell. An extra column of cell

is added to the 16 x 16 cells to generate the true sign of the par-

tial products. Also, the last cell of this columnn can be xor'ed with

the MSB of the 16 x, 16 multiplier result to generate the overflow

check.

A two-phase clock is used with two cycles in each phase. Phase

one must be long enough for both the adder to finish addition or for

the multiplier to finish multiplication and also for the output latch

to latch in the LSB. Phase two must be long enough for both the

input latch to latch the )5B or the output latch to latch the MSB and

also for the reciprocator to finish calculation.

Note that the multiplier scheme using Booth's algorithm calcu-

lates in moderate speed and it takes up a lot of area. A faster mul-

tiplier can be implemented. In addition, reciprocation and then mul-

tiplication can be replaced by just a divide using a divider so that

the calculation needs only go through one stage. Also, 0'1 can be

shortened too. A RAN can also be added so that intermediate results
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x y z -- x + [aly~tl].
I I u = (xeb)(yet) +Yt

.b b.
U: t

Fig. 36. A basic cell for the reciprocator.
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0 1 0 1 0 0 0 1 0 0

*0 0 0 .11y14 5 (10.10)(loo01) -000101.1010

(01.01)(100.01) - 111011.0101
ovf low check -L L5 . i _7

4 4 16

Fig. 37. The multiplier using Booth's algorithm.
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can be stored in local memory and can shorten memory access time. In

addition, a RON can also be added to store the instruction sequences

of each processing element. A floating point processing element can

be designed using the same functional control described in this

appendix.

.. ~ .
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